WebFaction APl Documentation

Swarma Limited - WebFaction is a service of Swarma Limited

1 Introduction

2 Tutorial

2.1
2.2
23
24
2.5

Getting Started

CONTENTS

Creating an Email Address e e e e

Installing an Application
Packaging the Install Script for the Control Panel
Additional Resources

3 API Reference

3.1
32
33
34
3.5
3.6
3.7
3.8
39

3.10 Servers
3.11 Miscellaneous

General
Email
Websites and Domains

Applications

Shell Users

4 Application Types

Index

Cron e
DNS . ..
Databases
Files

WebFaction APl Documentation

Contents:

CONTENTS 1

WebFaction APl Documentation

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The WebFaction API (Application Programming Interface) is a powerful XML-RPC interface for managing many
control panel and account tasks. With the WebFaction API, you can automate application installation, email address
configuration, and more.

Like other XML-RPC APIs, the WebFaction API works by sending a short piece of XML over HTTP. Luckily, many
languages have XML-RPC libraries to make requests quick and painless.

For example, you can send an XML-RPC request using Python‘s xmlrpclib module:

>>> import xmlrpclib
>>> server = xmlrpclib.ServerProxy ('https://api.webfaction.com/")
>>> session_id, account = server.login ('widgetsco', 'widgetsrock')

Or with Ruby’s xmlrpc package:

>> require 'xmlrpc/client'
=> true
>> require 'pp'
=> true
>> server = HE .new2 ("https://api.webfaction.com/")
#<XMLRPC: :Client:0x5b1698 (@cookie=nil, @create=nil, (@port=443>
>> pp server.call ("login", "widgetsco", "widgetsrock")
["cad4c008c24c0de9c9c8",

{"mail_server"=>"Mail5",

"web_server"=>"Web55",

"username"=>"widgetsco",

"id"=>687,
"home ":> " /home n } :|
=> nil

To learn more about XML-RPC and find an implementation in your favorite language, please visit XMLRPC.com.

http://www.xmlrpc.com
http://www.python.org
http://docs.python.org/library/xmlrpclib.html
http://www.xmlrpc.com/

WebFaction APl Documentation

4 Chapter 1. Introduction

CHAPTER
TWO

TUTORIAL

The WebFaction API allows you to write scripts to automate certain tasks that you would normally accomplish with
the control panel or an SSH session.

For instance, you could use the API to write a script to configure lots of email addresses, instead of creating them one
by one in the control panel.

You can also use the API to automate the installation of any application that you like, and you can share the resulting
install script to allow other users to use it in one click.

2.1 Getting Started

The API is a set of methods available via XML-RPC calls at the URL https://api.webfaction.com/ . In
this documentation we will use the Python programming language to talk to the API, but you can use any language
that you want, provided that it has an XML-RPC library.

First, connect to the server and login:

>>> import xmlrpclib

>>> server = xmlrpclib.ServerProxy ('https://api.webfaction.com/")
>>> session_id, account = server.login('test5', 'password')

>>> gccount

{'username': 'test5', 'home': '/home2', 'id': 237}

The username and password passed to the login method are those used to login to the control panel.

As you can see, the 1ogin method returns a tuple. The first element is a string containing a session ID that you
will need to pass to all subsequent methods. The second element is a dictionary containing various data about your
account, including the base home directory (usually /home or /home2).

2.2 Creating an Email Address

Let’s create a new email address for our account:

>>> server.create_email (session_id, 'user@mydomain.example', 'test5'")
{'autoresponder_from': '',

'autoresponder_message': '',
'autoresponder_on': O,
'autoresponder_subject': '',

'email_ address': 'user@mydomain.example',
'id': 2037,

'script_machine': '"',

WebFaction APl Documentation

'script_path': '',
'targets': 'test5'}

The create_email method takes the session ID, the email address and a string of comma separated target
mailboxes. It returns a dictionary containing various data about the newly created email address.

This call is equivalent to creating the email address from the control panel, but the advantage is that you can script it.

2.3 Installing an Application

Now let’s see which methods we can use to install an application. For this tutorial, let’s install a Joomla application.
First, create a Static/CGI/PHP application:

>>> server.create_app(session_id, 'my_joomla_app', 'static_php56', False, '', False)
{'autostart': False,

'extra_info': '',

'id': 892545,

'machine': 'Web31',

'name': 'my_joomla_app',

'open_port': False,

'port': O,

'type': 'static_php56'}

create_app uses the following parameters:

* session_id — session ID returned by login

e name (string) — name of the application

* type (string) — type of the application

* autostart (boolean) — whether the app should get restarted with an autostart.cgi script

* extra_info (string) — additional information required by the application (for example, a file path). If
extra_info isnotrequired by the application, it is ignored.

* open_port (boolean) — for applications that listen on a port, whether the port should be open on shared and
dedicated IP addresses

Calling create_app is equivalent to creating the application through the control panel: it creates the directory
and configures everything that’s needed for this application.

Next, you need to download the Joomla archive and extract it in the app directory. To do so we’ll use the system
method of the API, which allows us to execute some command on our server as if we were logged in with SSH. Since
the default Static/CGI/PHP app comes with an index.html file which would shadow the index.php file
provided by Joomla, we will also delete that file:

>>> cmd = "rm —-f index.html;"
>>> cmd += "wget https://wiki.webfaction.com/attachment/wiki/JoomlaFiles/Joomla_1.5.0-Beta-Full_Pack:
>>> cmd += "tar xzvf Joomla_1.5.0-Beta-Full_Package.tar.gz?format=raw"

>>> server.system(session_id, cmd)

[}

Because we previously installed an application, the system method automatically runs in the new application’s
directory. The system method returns whatever the command printed to standard output. If the command prints
something to standard error, system raises an error with that text.

Next, create a MySQL database, since Joomla requires one:

6 Chapter 2. Tutorial

http://www.joomla.org/

WebFaction APl Documentation

>>> server.create_db(session_id, 'test5_joomla_db', 'mysqgl', 'db_password')

{'type': 'mysql',
'id': '1161011151160530951061111111091080970951000980451",
'name': 'test5_joomla_db'}

This creates a MySQL database called test5_joomla_db and a user of the same name, with the password

db_password .

Next, copy the Joomla configuration file from configuration.php-dist to configuration.php and
then edit it to specify the database connection settings:

>>> server.system(session_id, "cp configuration.php-dist configuration.php;")
T

>>> server.replace_in_file(session_id, 'configuration.php',

("var Suser = '';", "var S$user = 'test5_joomla_db';"),
("var S$password = '';", "var S$password = 'db_password';"),
("var $db = '"';", "var $db = 'test5_joomla_db';"))

The handy replace_in_file method lets us find and replace in a file. It takes a session ID, the name of the file,
and any number of tuples containing a string to replace and the replacement string.

There are a few other steps needed to install a Joomla application: we need to edit the Joomla SQL file and run it. We
won’t detail them here—you can look at the actual script for details.

2.4 Packaging the Install Script for the Control Panel

Previously, we installed a Joomla application by manually running a bunch of commands. We can package these
commands in an install script for the control panel to run for us. The advantage is that we can then run this install
script over and over again directly from the control panel or share it with others.

2.4.1 How the Install Script is Run

To use an install script in the control panel:
1. Log in to the control panel.
Click Domains / websites — Applications. The list of applications appears.
Click the Add new application button. The Create a new application form appears.
In the Name field, enter a name for the application.
In the App Category menu, click to select Custom. The Script URL field appears.
In the Script URL field, enter the install script’s URL.
Click the Fetch URL button.

® NSk w N

If applicable, in the Machine menu, select a web server.
9. Click the Save button.

When you click the Create button, the script is run with the following parameters:
install_script create|delete username password app_name autostart extra_info

* username — control panel username

2.4. Packaging the Install Script for the Control Panel 7

https://wiki.webfaction.com/wiki/Joomla-1.5.0-BetaInstall

WebFaction APl Documentation

* password — user’s hashed password

* app_name — application name from Name field.

e autostart (boolean) — whether the user selected the Autostart checkbox
e extra_info — contents of the Extra info field.

When the user creates the app, the control panel will call the script with create as the first parameter. If the user
deletes the app later on, the control panel will call the script with delete as the first parameter.

When it calls the script with create , the control panel expects the script to print the application ID to standard
output and nothing else. If the script prints anything else to standard output, or prints anything to standard error, the
control panel will display it as an error message on the add application page.

When it calls the script with delete , the control panel expects your script to not print anything to standard output
or standard error. If anything gets printed the control panel will display it as an error message.

Additionally, if your script is written in Python and you include a docstring (PEP 257) at the beginning of the script,
the control panel will use it as the application documentation.

To see two examples of install scripts, take a look a the Joomla install script or the MoinMoin install script.

2.4.2 Making a Script Available in One Click
Now that you have your install script, one way to share it would be to ask others copy and paste it in the control
panel. That’s not convenient but fortunately, there is a better way.

On the add application page in the control panel, there is a field Install script url that appears when you select Custom
install script. If you enter a URL and click Fetch URL, the control panel will look for an install script at that URL.
For the control panel to find the script on the page, your script must be enclosed between these two magic tags:

If you make your script available on the web, all you have to do to let anyone use it is give them a special URL in the
form https://my.webfaction.com/app/new-application?script_url=location where
location is the escaped URL to your script.

You can see examples at InstallScripts, where Joomla, MoinMoin, and other applications can be installed using that
approach.

2.5 Additional Resources

For more information about the WebFaction API, please consult the API Reference.

8 Chapter 2. Tutorial

http://www.python.org/dev/peps/pep-0257
https://wiki.webfaction.com/wiki/Joomla-1.5.0-BetaInstall
https://wiki.webfaction.com/wiki/MoinMoin-1.8.5Install
https://wiki.webfaction.com/wiki/InstallScripts

CHAPTER
THREE

API REFERENCE

The WebFaction XML-RPC API provides methods to handle many account tasks. This documentation is a complete
reference to all of the possible API methods.

Please note that XML-RPC parameters are positional (order matters), and many parameters are required. Parameters
may only be omitted if omitted parameters have default values and follow all other parameters to which you have
supplied a value.

3.1 General

login
Parameters
* username (string) — a valid WebFaction control panel username
» password (string) — a valid WebFaction control panel user’s password

* machine (string) — the case-sensitive machine name (for example, Web55); optional for
accounts with only one machine

Log in a user and return credentials required to make requests for that user. The method returns a session ID
string and a struct containing following key-value pairs:

id account ID
username username
home home directory path

web_server Web server associated with the logged in account (for example, Web55)

mail_server mail server associated with the logged in account (for example, Mailbox2)

Note: The session ID is required for all subsequent API calls.

list_disk_usage

Parameters session_id — session ID returned by login

List disk space usage statistics about your account (similar to usage statistics shown on the control panel). The
method returns a struct containing the following members:

home_directories A list of structs with details for each home directory associated with the account.
Each struct contains the following members:

last_reading The date and time of the last recording of the home directory’s size

http://en.wikipedia.org/wiki/XML-RPC
https://my.webfaction.com/disk_usage

WebFaction APl Documentation

machine The server name (for example, Web300)

name The username
size The disk usage in kilobytes

mailboxes A list of structs with details for each mailbox associated with the account. Each struct contains
the following members:

last_reading The date and time of the last recording of the mailbox’s size
name The mailbox name
size The disk usage in kilobytes

mysql_databases A list of structs with details for each MySQL database associated with the account.
Each struct contains the following members:

last_reading The date and time of the last recording of the database’s size
name The database name

size The disk usage in kilobytes

postgresql_databases A list of structs with details for each PostgreSQL database associated with the
account. Each struct contains the following members:

last_reading The date and time of the last recording of the database’s size
name The database name
size The disk usage in kilobytes

total The account’s total disk usage in kilobytes

quota The account’s total disk allotment in kilobytes

percentage The account’s total disk usage as a percentage of the quota (for example, an account using 3.1
GB of 100 GB would use 3.1 percent of its quota)

3.2 Email

3.2.1 Mailboxes

change_mailbox_password

Parameters
* session_id — session ID returned by login
» mailbox (string) — a valid mailbox name
 password (string) — the new mailbox password
Change a mailbox password.
See also:

See Strengthening Passwords for important information about choosing passwords.

create_mailbox

Parameters

10

Chapter 3. API Reference

https://docs.webfaction.com/user-guide/passwords.html#strengthening-passwords

WebFaction APl Documentation

session_id — session ID returned by login

mailbox (string) — mailbox name

enable_spam_protection (boolean) — whether spam protection is enabled for the mailbox
(optional, default: true)

discard_spam (boolean) — whether spam messages received by the new mailbox are
discarded (optional, default: false)

» spam_redirect_folder (string) — name of the IMAP folder where messages identified as
spam are stored (optional, default: an empty string)

use_manual_procmailrc (boolean) — whether to use manual procmailrc rules as specified
by the manual_procmailrc parameter (optional, default: false)

manual_procmailrc (string) — the procmailre rules for the mailbox (optional, default: an
empty string)

Warning: If discard_spam is true, messages misidentified as spam—false positives—may be lost

permanently.

Create a mailbox and return a struct containing the following key-value pairs:

id mailbox ID

name mailbox name

enable_spam_protection name of the folder where messages identified as spam are stored
password a randomly generated password

discard_spam a boolean indicating whether spam emails are be discarded
spam_redirect_folder name of the IMAP folder where messages identified as spam are stored
use_manual_procmailrc a boolean indicating whether manual procmailrc rules are enabled
manual_procmailre a string containing manual procmailre rules

See also:

update_mailbox

delete_mailbox
Parameters
* session_id — session ID returned by login
* mailbox (string) — mailbox name
Delete a mailbox.

list _mailboxes

Parameters session_id — session ID returned by login

Get information about the account’s mailboxes. The method returns an array of structs with the following
key-value pairs:

id mailbox ID
name mailbox name

enable_spam_protection name of the folder where messages identified as spam are stored

3.2. Email 11

WebFaction APl Documentation

password arandomly generated password

discard_spam a boolean indicating whether spam emails are be discarded
spam_redirect_folder name of the IMAP folder where messages identified as spam are stored
use_manual_procmailrc aboolean indicating whether manual procmailre rules are enabled

manual_procmailre a string containing manual procmailre rules

update_mailbox

Parameters
* session_id — session ID returned by login
* mailbox (string) — mailbox name

* enable_spam_protection (boolean) — whether spam protection is enabled for the mailbox
(optional, default: true)

* discard_spam (boolean) — whether spam messages received by the new mailbox are
discarded (optional, default: false)

» spam_redirect_folder (string) — name of the IMAP folder where messages identified as
spam are stored (optional, default: an empty string)

» use_manual_procmailre (boolean) — whether to use manual procmailrc rules as specified
by the manual_procmailrc parameter (optional, default: false)

* manual_procmailre (string) — the procmailrc rules for the mailbox (optional, default: an
empty string)

Warning: If discard_spam is true, messages misidentified as spam—false positives—may be lost

permanently.

Change the details of an existing mailbox. The mailbox must exist before calling the method. The method
returns a struct containing the following key-value pairs:

id mailbox ID

name mailbox name

enable_spam_protection name of the folder where messages identified as spam are stored
password a randomly generated password

discard_spam a boolean indicating whether spam emails are be discarded
spam_redirect_folder name of the IMAP folder where messages identified as spam are stored
use_manual_procmailrc aboolean indicating whether manual procmailre rules are enabled
manual_procmailre a string containing manual procmailre rules

See also:

create_mailbox

3.2.2 Addresses

create_email

Parameters

12

Chapter 3. API Reference

WebFaction APl Documentation

* session_id — session ID returned by login

* email_address (string) — an email address (for example, name@example.com)
* targets (string) — names of destination mailboxes or addresses, separated by commas

* autoresponder_on (boolean) — whether an autoresponder is enabled for the address
(optional, default: false)

* autoresponder_subject (string) — subject line of the autoresponder message (optional,
default: an empty string)

 autoresponder_message (string) — body of the autoresponder message (optional, default:
an empty string)

 autoresponder_from (string) — originating address of the autoresponder message
(optional, default: an empty string)

* script_machine (string) — a machine name for specifying a path to a script (optional,
default: an empty string)

* script_path (string) — an absolute path to a script; see Sending Mail to a Script for details
(optional, default: an empty string)

Create an email address which delivers to the specified mailboxes.
If autoresponder_on is true, then an autoresponder subject, message, and from address may be specified.
See also:

update_email

delete_email
Parameters

* session_id — session ID returned by login

* email_address (string) — an email address (for example, name@example.com)
Delete an email address.

list_emails

Parameters session_id — session ID returned by login

Get information about the account’s email addresses. The method returns an array of structs with the following
key-value pairs:

id email ID
email_address email address
targets mailboxes or email addresses to which the address is set to deliver
autoresponder_on a boolean indicating whether an autoresponder is enabled for the address
autoresponder_subject the autoresponder subject line (if applicable)
autoresponder_message the autoresponder message body (if applicable)
autoresponder_from the autoresponder from address (if applicable)

update_email

Parameters

* session_id — session ID returned by login

3.2. Email 13

https://docs.webfaction.com/user-guide/email.html#email-sending-mail-to-a-script

WebFaction APl Documentation

* email_address (string) — an email address (for example, name@example.com)
* targets (array) — names of destination mailboxes or addresses

* autoresponder_on (boolean) — whether an autoresponder is enabled for the address
(optional, default: false)

 autoresponder_subject (string) — subject line of the autoresponder message (optional,
default: an empty string)

* autoresponder_message (string) — body of the autoresponder message (optional, default:
an empty string)

 autoresponder_from (string) — originating address of the autoresponder message
(optional, default: an empty string)

* script_machine (string) — a machine name for specifying a path to a script (optional,
default: an empty string)

* script_path (string) — an absolute path to a script; see Sending Mail to a Script for details
(optional, default: an empty string)

Change the details of an existing email address. The email address must exist before calling the method. The
method returns a struct with the following key-value pairs:

id email ID

email_address email address

targets mailboxes or email addresses to which the address is set to deliver
See also:

create_email

3.3 Websites and Domains

create_domain
Parameters

* session_id — session ID returned by login
¢ domain (string) — a domain name in the form of example.com

» subdomain (string) — each additional parameter provided after domain : a subdomain
name of domain

Create a domain entry. If domain has already been created, you may supply additional parameters to add
subdomains. For example, if example.com already exists, create_domain may be called with four
parameters— a session ID, example.com, www, private —to create www.example.com and

private.example.com.

Example: Create a domain entry for widgetcompany.example using Python:

>>> import xmlrpclib
>>> server = xmlrpclib.ServerProxy ('https://api.webfaction.com/")
>>> session_id, account = server.login('widgetsco', 'widgetsrock')

>>> server.create_domain (session_id, 'widgetcompany.example',
{'domain': 'widgetcompany.example',

www', 'design')

14 Chapter 3. API Reference

https://docs.webfaction.com/user-guide/email.html#email-sending-mail-to-a-script

WebFaction APl Documentation

'id': 47255,
'subdomains': ['www', 'design']}
create_website
Parameters

* session_id — session ID returned by login
» website_name (string) — the name of the new website entry
* ip (string) — IP address of the server where the entry resides
* https (boolean) — whether the website entry should use a secure connection

* subdomains (array) — an array of strings of (sub)domains to be associated with the website
entry

* site_apps (array) — each additional parameter provided after subdomains : an array
containing a valid application name (a string) and a URL path (a string)

Create a new website entry. Applications may be added to the website entry with additional parameters
supplied after subdomains . The additional parameters must be arrays containing two elements: a valid

application name and a path (for example, ' htdocs’ and '/’).

Example: Create a website entry for widgetcompany.example ‘s new Django project over HTTPS

using Python:

>>> import xmlrpclib

>>> server = xmlrpclib.ServerProxy ('https://api.webfaction.com/")
>>> session_id, account = server.login('widgetsco', 'widgetsrock')

>>> server.create_website (session_id,
'widgets_on_the_web',
'174.133.82.194"',
True,
['widgetcompany.example', 'www.widgetcompany.example'],
['django', '/'])
{'https': True,
'id': 67074,
'ip': '174.133.82.194",
'name': 'widgets_on_the_web',
'site_apps': [['django', '/'ll,
'subdomains': ['widgetcompany.example', 'www.widgetcompany.example']}

delete_domain
Parameters
* session_id — session ID returned by login

* domain (string) — name of the domain to be deleted or the parent domain of the
subdomains to be deleted

» subdomains (string) — each additional parameter provided after domain : subdomains of
domain to be deleted

Delete a domain record or subdomain records. Subdomains of a domain may be deleted by supplying
additional parameters after domain . If any subdomains are provided, only subdomains are deleted and the
parent domain remains.

delete_website

Parameters

3.3. Websites and Domains 15

https://docs.webfaction.com/user-guide/server.html#server-ip

WebFaction APl Documentation

* session_id — session ID returned by login
* website_name (string) — name of website to be deleted

* ip (string) — IP address of the server where the website resides

https (boolean) — whether the website uses a secure connection (optional, default: false)
Delete a website entry.

list_bandwidth_usage

Parameters session_id — session ID returned by login

List bandwidth usage statistics for your websites (similar to usage statistics shown on the control panel). The
method returns a struct containing two members:

daily : A struct containing members named for the dates for the past two weeks (for example,

2015-01-05, 2015-01-04, 2015-01-03 and so on). The value of each dated member is a struct
containing members named for each domain associated with the account (for example, example.com,

www.example.com, somedomain.example, www.somedomain.example and so on). The
value of each domain name member is the bandwidth usage for that domain during that day in kilobytes.

monthly : A struct containing members named for the months for the past year (for example, 2015-01 ,
2014-12, 2014-11 and so on). The value of each month member is a struct containing members named
for each domain associated with the account (for example, example.com, www.example.com,

somedomain.example , www.somedomain.example and so on). The value of each domain name
member is the bandwidth usage for that domain during that month in kilobytes.

Overall, the struct resembles this outline:
*daily
—today
* Wwww.example.com: 1024

* example.com: 512

—yesterday
—two weeks ago
emonthly
—this month
* www.example.com: 2048
* example.com: 1024

—last month

—a year ago
list _domains

Parameters session_id — session ID returned by login

16 Chapter 3. API Reference

https://my.webfaction.com/bandwidth_usage

WebFaction APl Documentation

Get information about the account’s domains. The method returns an array of structs with the following
key-value pairs:

id domain ID
domain domain (for example, example.com)
subdomains array of subdomains for the domain

list_ websites

Parameters session_id — session ID returned by login

Get information about the account’s websites. The method returns an array of structs with the following
key-value pairs:

id website ID

name website name

ip website IP address

https whether the website is served over HTTPS
subdomains array of website’s subdomains

website_apps array of the website’s apps and their URL paths; each item in the array is a two-item array,
containing an application name and URL path

update_website
Parameters
* session_id — session ID returned by login
» website_name (string) — the name of the website entry
* ip (string) — IP address of the server where the entry resides
* https (boolean) — whether the website entry should use a secure connection

» subdomains (array) — an array of strings of (sub)domains to be associated with the website
entry

* site_apps (array) — each additional parameter provided after subdomains : an array
containing a valid application name (a string) and a URL path (a string)

Update a website entry. Applications may be added to the website entry with additional parameters supplied
after subdomains . The additional parameters must be arrays containing two elements: a valid application

name and a path (for example, ' htdocs’ and '/’).

Example: Update a website entry for widgetcompany.example ‘s new Django project over HTTPS

using Python:

>>> import xmlrpclib

>>> server = xmlrpclib.ServerProxy ('https://api.webfaction.com/")
>>> session_id, account = server.login('widgetsco', 'widgetsrock')

>>> server.update_website (session_id,
'widgets_on_the_web',
'174.133.82.195",
True,
['widgetcompany.example', 'dev.widgetcompany.example'],
('django', '/'), ('wordpress', '/blog'))

{'https': True,

'id': 67074,

3.3. Websites and Domains 17

WebFaction APl Documentation

'ip': '174.133.82.195",

'name': 'widgets_on_the_web',

'site_apps': [['django', '/']l, ['wordpress', '/blog'll],

'subdomains': ['widgetcompany.example', 'dev.widgetcompany.example']}

3.4 Applications

create_app
Parameters
* session_id — session ID returned by login
* name (string) — name of the application
* type (string) — type of the application

* autostart (boolean) — whether the app should restart with an autostart.cgi script
(optional, default: false)

* extra_info (string) — additional information required by the application; if extra_info is not
required or used by the application, it is ignored (optional, default: an empty string)

* open_port (boolean) — for applications that listen on a port, whether the port should be
open on shared and dedicated IP addresses (optional, default: false)

Create a new application.
See also:
For a complete list of application types, see Application Types.
delete_app
Parameters
* session_id — session ID returned by login
* name (string) — name of the application
Delete an application.
list_apps
Parameters session_id — session ID returned by login

Get information about the account’s applications. The method returns an array of structs with the following
key-value pairs:

id app ID

name app name

ype app type

autostart whether the app uses autostart

port port number if the app listens on a port, otherwise is 0

open_port for applications that listen on a port, whether the port is open on shared and dedicated IP addresses
(True for open ports, False for closed ports, or for applications that do not listen to a port)

extra_info extra info for the app if any

18 Chapter 3. API Reference

WebFaction APl Documentation

machine name of the machine where the app resides
list_app_types
Parameters session_id — session ID returned by login

Get information about available app types. The method returns an array of structs with the following key-value
pairs:

name an identifier for the application type (for use as the create_app method’s type parameter)
label a short description of the application type
description a longer description of the application type

autostart applicable or an empty string, indicating whether the application uses an autostart.cgi
file

extra_info description of any additional information required by the application installer’s extra_info field
open_port aboolean value indicating whether the application may use an open port
See also:

create_app

3.5 Cron

create_cronjob
Parameters
* session_id — session ID returned by login
* line (string) — crontab line to be added
Create a new cron job.
See also:
For more information about the cron syntax, please see the Wikipedia entry on cron.
delete_cronjob
Parameters
* session_id — session ID returned by login
¢ line (string) — crontab line to be removed

Remove an existing cron job.

3.6 DNS

create_dns_override
Parameters

* session_id — session ID returned by login

* domain (string) — domain name to be overridden (for example, sub.example.com)

* a_ip (string) — A 1P address (optional, default: an empty string)

3.5. Cron 19

http://en.wikipedia.org/wiki/Cron#crontab_syntax

WebFaction APl Documentation

* cname (string) — CNAME record (optional, default: an empty string)

* mx_name (string) — Mail exchanger record host name (optional, default: an empty string)
* mx_priority (string) — Mail exchanger record priority (optional, default: an empty string)
 spf_record (string) — TXT record (optional, default: an empty string)

* aaaa_ip (string) — An IPv6 address (optional, default: an empty string)

» srv_record (string) — A service locator (optional, default: an empty string)

Create DNS records and return an array of the new records (as in the form of 1ist_dns_overrides).

delete_dns_override
Parameters

* session_id — session ID returned by login

* domain (string) — domain name to be overridden (for example, sub.example.com)
* a_ip (string) — A IP address (optional, default: an empty string)

* cname (string) — CNAME record (optional, default: an empty string)

* mx_name (string) — Mail exchanger record host name (optional, default: an empty string)
* mx_priority (string) — Mail exchanger record priority (optional, default: an empty string)
* spf_record (string) — TXT record (optional, default: an empty string)

 aaaa_ip (string) — An IPv6 address (optional, default: an empty string)

» srv_record (string) — A service locator (optional, default: an empty string)

Delete DNS records and return an array of the deleted records (as in the form of 1ist_dns_overrides).
list_dns_overrides

Parameters session_id — session ID returned by login

Get information about the account’s DNS overrides. The method returns an array of structs with the following
key-value pairs:

id domain ID

domain domain name to be overridden (for example, sub.example.com)
a_ip A TP address

aaaa_ip AAAA TP address (for IPv6)

cname CNAME record

mx_name Mail exchanger record host name

mx_priority Mail exchanger record priority

spf_record TXT record

srv_record Service record

20 Chapter 3. API Reference

WebFaction APl Documentation

3.7 Databases

change_db_user_password
Parameters

* session_id — session ID returned by login
* username (string) — a database user’s username
* password (string) — the new password
* db_type (string) — the database type, either mysgl or postgresqgl

Change a database user’s password. The method returns a struct containing the following key-value pairs:

username database username

machine database machine name

db_type database type (MySQL or PostgreSQL)

database database name

See also:

See Strengthening Passwords for important information about choosing passwords.

create_db
Parameters

* session_id — session ID returned by login
* name (string) — database name
» db_type (string) — the database type, either mysgl or postgresqgl
 password (string) — password for the default database user
* db_user (string) — an existing database user (optional, default: create a new user)

Create a database. Optionally, you may assign ownership of the database to an existing user. To assign
ownership to an existing user, provide an empty string as the password parameter and the username as the

db_user parameter.

Note: MySQL database names may not exceed 16 characters.

See also:
See Strengthening Passwords for important information about choosing passwords.
create_db_ user
Parameters
* session_id — session ID returned by login
* username (string) — the new database user’s username
» password (string) — the new database user’s password
* db_type (string) — the database type, either mysgl or postgresqgl
Create a database user. The method returns a struct with the following key-value pairs:

machine machine name

3.7. Databases 21

https://docs.webfaction.com/user-guide/passwords.html#strengthening-passwords
https://docs.webfaction.com/user-guide/passwords.html#strengthening-passwords

WebFaction APl Documentation

username database username
db_type database type (MySQL or PostgreSQL)
See also:
See Strengthening Passwords for important information about choosing passwords.
delete_db
Parameters
* session_id — session ID returned by login
* name (string) — database name
* db_type (string) — the database type, either mysgl or postgresqgl
Delete a database.
delete db user
Parameters
* session_id — session ID returned by login
* username (string) — the database user’s username
* db_type (strings mysgl or postgresqgl)— the database type
Delete a database user. The method returns a struct with the following key-value pairs:
machine machine name
username database username
db_type database type (MySQL or PostgreSQL)
enable_addon
Parameters
* session_id — session ID returned by login
» database (string) — a database name

* db_type (string) — the database type (always use postgresqgl)

* addon (string) — the addon to enable (t search or postgis)
Enable a database addon. The method returns a struct with the following key-value pairs:
machine machine name
db_type database type (always PostgreSQL)
addon addon enabled
db_type database type (MySQL or PostgreSQL)

Note: This method applies to PostgreSQL databases only.

grant_db_permissions
Parameters
* session_id — session ID returned by login

* username (string) — a database user’s username

22 Chapter 3. API Reference

https://docs.webfaction.com/user-guide/passwords.html#strengthening-passwords

WebFaction APl Documentation

* database (string) — a database name
* db_type (string) — the database type (mysgl or postgresql)

Grant full database permissions to a user with respect to a database. The method returns a struct with the
following key-value pairs:

machine machine name
username database username
db_type database type (MySQL or PostgreSQL)
database database name
list_dbs
Parameters session_id — session ID returned by login

Get information about the account’s databases. The method returns an array of structs with the following
key-value pairs:

name database name
db_type database type (MySQL or PostgreSQL)

users an array of arrays each containing the name of a user with access to the database and that user’s
permissions to the database

machine machine name
encoding character encoding (such as UTF-8)
addons installed PostgreSQL addons, such as PostGIS
list_db_users
Parameters session_id — session ID returned by login

Get information about the account’s database users. The method returns an array of structs with the following
key-value pairs:

machine machine name
username database username
db_type database type (MySQL or PostgreSQL)
make_user owner of db
Parameters
* session_id — session ID returned by login
* username (string) — a database user’s username
» database (string) — a database name
* db_type (string) — the database type (mysgl or postgresqgl)
Assign ownership of a database to a user. The method returns a struct with the following key-value pairs:
machine machine name
username database username
db_type database type (MySQL or PostgreSQL)

database database name

3.7. Databases 23

WebFaction APl Documentation

revoke_db_permissions
Parameters
* session_id — session ID returned by login
* username (string) — a database user’s username
* database (string) — a database name
* db_type (string) — the database type (mysqgl or postgresql)

Revoke a user’s permissions with respect to a database. The method returns a struct with the following
key-value pairs:

machine machine name
username database username
db_type database type (MySQL or PostgreSQL)

database database name

3.8 Files

replace_in_file
Parameters
* session_id — session ID returned by login
* filename (string) — path to file from the user’s home directory

* changes (array) — each additional parameter provided after £ilename : an array of two
strings, where the first is the text to be replaced and the second is the replacement text

Find and replace strings in a file in the users’s home directory tree.

Any parameters after £ilename must be arrays containing a pair of strings, where the first is the string to be
replaced and the second is the replacement text.

Example: Find all appearances of the word “eggs” in a file in the user’s home directory and replace them with
the word “spam” using Python:

cat myfile.txt
eggs, spam, spam, and spam.
spam, spam, spam, and eggs.

>>> import xmlrpclib

>>> server = xmlrpclib.ServerProxy ('https://api.webfaction.com/")
>>> session_id, account = server.login('widgetsco', 'widgetsrock')
>>> server.replace_in_file(session_id, 'myfile.txt', ('eggs', 'spam'))

T

>>> exit ()

cat myfile.txt
spam, spam, spam, and spam.
spam, spam, spam, and spam.

replace_in_file

write_file

24 Chapter 3. API Reference

WebFaction APl Documentation

Parameters
* session_id — session ID returned by login
* filename (string) — path to file to be written from the user’s home directory
e str (string) — string to be written
* mode (string) — write mode (optional, default: wb)

Write a string to a file in the user’s home directory tree.

Note: Commonly, the write mode is w for plain text and wb for binaries. a and ab can be used to
append to files.

See also:

For more information about write modes, please see open().

3.9 Shell Users

change_user_password
Parameters
* session_id — session ID returned by login
* username (string) — username
* password (string) — a new password
Change a shell user’s password.
See also:
See Strengthening Passwords for important information about choosing passwords.
create_user
Parameters
* session_id — session ID returned by login
* username (string) — username

¢ shell (string) — the user’s command line interpreter; one of none , bash, sh, ksh,
csh,or tcsh.

* groups (array) — extra permission groups of which the new user is to be a member

Create a new shell user. If shell is none , the user has FTP access only. All users are automatically a
member of their own group; do not include the user’s own group in groups . Use an empty array to specify
no extra groups.

delete_user
Parameters
* session_id — session ID returned by login
* username (string) — username
Delete a user.

list users

3.9. Shell Users 25

http://docs.python.org/library/functions.html#open
https://docs.webfaction.com/user-guide/passwords.html#strengthening-passwords

WebFaction APl Documentation

Parameters session_id — session ID returned by login

Get information about the account’s shell users. The method returns an array of structs with the following
key-value pairs:

username username
machine the user’s server (for example, Web100)
shell the user’s configured command line interpreter (for example, bash or tcsh)

groups extra permissions groups of which the user is a member

3.10 Servers

list_ips
Parameters session_id — session ID returned by login

Get information about all of the account’s machines and their IP addresses. This method returns an array of
structs with the following key-value pairs:

machine machine name (for example, Web100)

ip IP address

is_main aboolean value indicating whether the IP address is the primary address for the server (true) or an
extra IP address provisioned to the account (false)

list_machines

Parameters session_id — session ID returned by login

Get information about the account’s machines. This method returns an array of structs with the following
key-value pairs:

name machine name (for example, Web100)
operating_system the machine’s operating system (for example, Centos6-64bit)

location the machine’s location (for example, USA)

3.11 Miscellaneous

run_php_script
Parameters
* session_id — session ID returned by login

* script (string) — an absolute path to script (or path to the script starting from the user’s
home directory)

* code_before (string) — PHP code to be executed before script
Run PHP code followed by a PHP script. The PHP code and script is run as the user.
set_apache_acl

Parameters

26 Chapter 3. API Reference

WebFaction APl Documentation

* session_id — session ID returned by login
* paths (string or array of strings) — path from home directory
* permission (string) — r, w,or x oracombination thereof (optional, default: rwx)

* recursive (boolean) — whether Apache’s access is granted recursively (optional, default:
false)

Grant the machine-wide Apache instance access to files or directories.
system
Parameters
* session_id — session ID returned by login
* cmd (string) — a shell command to be executed

Execute a command as the user, as if through SSH. If an application was installed previously in the session, the
command will be run from the directory where that application was installed.

Note: If cmd writes to standard error, the API method will return an XML-RPC fault.

3.11. Miscellaneous 27

WebFaction APl Documentation

28 Chapter 3. API Reference

CHAPTER
FOUR

APPLICATION TYPES

The following application types may be used with API methods such as create_app . Each entry contains the
application type’s unique name paired with it’s descriptive label.

awstats74 AWStats (7.4)

cherrypy380_27 CherryPy 3.8.0 (Python 2.7)

cherrypy380_34 CherryPy 3.8.0 (Python 3.4)
custom_app_with_port Custom app (listening on port)
custom_install_script Custom install script
custom_websockets_app with_port Custom websockets app (listening on port)
djangol422_mw4421_27 Django 1.4.22 (mod_wsgi 4.4.21/Python 2.7)
djangol711_mw4421_27 Django 1.7.11 (mod_wsgi 4.4.21/Python 2.7)
djangol711_mw4421_34 Django 1.7.11 (mod_wsgi 4.4.21/Python 3.4)
djangol87_mw4421 34 Django 1.8.7 (mod_wsgi 4.4.21/Python 3.4)
djangol188_mw4421_27 Django 1.8.8 (mod_wsgi 4.4.21/Python 2.7)
djangol188_mw4421_34 Django 1.8.8 (mod_wsgi 4.4.21/Python 3.4)
djangol91 mw4421 27 Django 1.9.1 (mod_wsgi 4.4.21/Python 2.7)
djangol91_mw4421 34 Django 1.9.1 (mod_wsgi 4.4.21/Python 3.4)
djangol91_mw4421_35 Django 1.9.1 (mod_wsgi 4.4.21/Python 3.5)
drupal_6_37 Drupal (6.37)

drupal_7_41 Drupal (7.41)

drupal_8_0 Drupal (8.0.0)

ghost-0.7.1 Ghost0.7.1

git_230 Git2.3.0

joomla 346 Joomla (3.4.6)

mod_wsgi4421-python27 mod_wsgi 4.4.21/Python 2.7

29

WebFaction APl Documentation

mod_wsgi4421-python34 mod_wsgi 4.4.21/Python 3.4
mod_wsgi4421-python35 mod_wsgi 4.4.21/Python 3.5
mysqgl MySQL private instance

node-0.10.31 Node.js 0.10.31

node-0.12.7 Node.js 0.12.7

node-4.2.2 Node.js4.2.2

passenger—4.0.58 Passenger 4.0.58 (nginx 1.6.2/Ruby 2.1)
passenger-5.0.21 Passenger 5.0.21 (nginx 1.8.0/Ruby 2.2)
postgresql PostgreSQL private instance

pyramid 15_27 Pyramid 1.5/Python 2.7
rails-4.1.12 Rails4.1.12 (nginx 1.6.2/Passenger 4.0.58/Ruby 2.1.2)
rails—-4.2.4 Rails4.2.4 (Passenger 5.0.21/Ruby 2.2)
redmine-2.6.7 Redmine 2.6.7

redmine—-3.0.5 Redmine 3.0.5

redmine-3.1.1 Redmine 3.1.1

static_only Static only (no .htaccess)

static_php54 Static/CGI/PHP-5.4

static_php55 Static/CGI/PHP-5.5

static_php56 Static/CGI/PHP-5.6

static_php70 Static/CGI/PHP-7.0

subversion Subversion

symlink53 Symbolic link to static/cgi/php53 app
symlink54 Symbolic link to static/cgi/php54 app
symlink55 Symbolic link to static/cgi/php55 app
symlink56 Symbolic link to static/cgi/php56 app
symlink70 Symbolic link to static/cgi/php70 app
symlink_static_only Symbolic link to static-only app
trac_0127 Trac (0.12.7) - Subversion

trac_0127_git Trac (0.12.7) - Git

trac_109_git Trac (1.0.9) - Git

trac_109_svn Trac (1.0.9) - Subversion

turbogears_234_27 TurboGears (2.3.4)/Python (2.7)

30

Chapter 4. Application Types

WebFaction APl Documentation

turbogears_234_34 TurboGears (2.3.4)/Python (3.4)
webdav WebDav

webdav_symlink WebDav Symlink

webstat Webalizer

wordpress_432 WordPress 4.3.2

wordpress_441 WordPress 4.4.1

* genindex

31

WebFaction APl Documentation

32 Chapter 4. Application Types

C

change_db_user_password, 21
change_mailbox_password, 10
change_user_password, 25
create_app, 18
create_cronjob, 19

create_db, 21

create_db_user, 21
create_dns_override, 19
create_domain, 14
create_email, 12
create_mailbox, 10
create_user, 25
create_website, 15

D

delete_app, 18
delete_cronjob, 19
delete_db, 22
delete_db_user, 22
delete_dns_override, 20
delete_domain, 15
delete_email, 13
delete_mailbox, 11
delete_user, 25
delete_website, 15

E

enable_addon, 22

G

grant_db_permissions, 22

L

list_app_types, 19
list_apps, 18
list_bandwidth_usage, 16
list_db_users, 23
list_dbs, 23
list_disk_usage, 9
list_dns_overrides, 20
list_domains, 16

INDEX

list_emails, 13
list_ips, 26
list_machines, 26
list_mailboxes, 11
list_users, 25
list_websites, 17
login, 9

M

make_user_owner_of_db, 23

P

Packaging, 7
Python Enhancement Proposals
PEP 257, 8

R

replace_in_file, 24
revoke_db_permissions, 23
run_php_script, 26

S

set_apache_acl, 26
system, 27

U

update_email, 13
update_mailbox, 12
update_website, 17

W

write_file, 24

33

	Introduction
	Tutorial
	Getting Started
	Creating an Email Address
	Installing an Application
	Packaging the Install Script for the Control Panel
	Additional Resources

	API Reference
	General
	Email
	Websites and Domains
	Applications
	Cron
	DNS
	Databases
	Files
	Shell Users
	Servers
	Miscellaneous

	Application Types
	Index

